PCI-E转USB3.1光纤接口卡,实现PCI-E至多个USB3.1接口的转换,并将USB3.1电信号转换为光纤信号。
背景技术
PCI Express 2.0的基础技术沿袭了上一代1.0版本的技术,即都采用高速串行总线技术,依靠高频率来获得高性能,因此PCI Express也一度被人们称为“串行PCI”。由于串行传输抗干扰能力很强,容易达到较高的频率,再加上差分信号技术的辅助,PCI Express更容易达到较高的传输频率,其中PCI Express 1.0总线频率为2.5GHz,2.0版进一步提升到了5GHz。PCI Express 2.0保持对现行1.0/1.1规范的兼容,旧的PCI Express扩展卡依然可以在PCI Express 2.0规范的系统中正常运行。同样,PCI Express 2.0扩展设备也可以工作在1.0的体统中,只不过此时设备必须工作在1.0兼容模式下。
2010年完成的PCI-E 3.0标准与PCI-E 2.0相比,PCI-E 3.0的目标是带宽继续翻倍达到10GB/s,要实现这个目标就要提高速度,PCI-E 3.0的信号频率从2.0的5GT/s提高到8GT/s,编码方案也从原来的8b/10b变为更高效的128b/130b,其他规格基本不变,每周期依然传输2位数据,支持多通道并行传输。除了带宽翻倍带来的数据吞吐量大幅提高之外,PCI-E 3.0的信号速度更快,相应地数据传输的延迟也会更低。此外,针对软件模型、功耗管理等方面也有具体优化。
USB3.0对传输速度进行了大幅提升,它基于全双工数据传输协议,理论传输速率高达5Gbps(即625MB/秒),实际数据传输速率也将高达3.2Gbps (即400MB/秒),相比USB2.0时代有了将近10倍的提升,而现在最新的USB3.1 Gen2标准又将传输速率提升到了10Gbps,因此数据的传输距离遇到了前所未有的挑战。由于传输速率由以往的USB2.0标准规定的480Mbps提升到了10Gbps,因此使用传统的电缆一般不会超过1米,但是由于采用电缆传输在使用过程中特别容易受到电磁干扰的影响,因此不适合在一些电磁干扰较大的工业生产流水线上使用,以及一些对电磁干扰敏感的设备(如军工设备)上使用;而目前随着工业4.0的兴起,许多USB3.0工业相机的传输距离会超过这个距离,甚至要达到几百米的距离,另外一些企业和单位出于安全考虑,往往需要将计算机主机集中管理,用户只能在远端使用USB3.0存储设备和USB3.0打印机,从而实现计算机主机与使用者的安全隔离,而计算机与终端之间往往也达到了上百米,并且数据在传输过程中不能有电磁泄漏而导致数据安全得不到保障。而我们采用光纤传输USB3.1信号即可以解决电磁干扰的问题,又可以解决传输距离的问题,此外现在虽然有一些可以实现USB3.0信号远距离传输的装置,但它们一般都是将终端设备的USB3.0数据通过USB3.0物理层芯片解析成其它的数据格式再重新编码转换成光纤来传输,另外一端将接收到的光信号转换成电信号,通过USB3.0物理层芯片转换成并行数据送到采集卡进行数据采集,它们都是针对一些特定的设备应用,无法实现其它USB3.0标准终端设备的接入,例如一种用来实现USB3.0工业相机远距离传输的装置是无法用来接入U盘、USB3.0移动硬盘或是打印机等其它USB3.1终端设备,而且现有还没有一种能直接将PCI-E接口直接转换成USB3.1光纤接口的方案。
实现思路