本技术涉及一种高效目标识别技术,包括方法、装置、终端设备和计算机可读存储介质。该技术通过获取来自待检测场景的点云数据,实现对目标的精准检测。
背景技术
目前,很多领域都需要对场景中目标对象的特征进行检测,比如检测目标对象的尺寸或者目标对象是否为可滚动的形状等。
目前,对于目标对象尺寸的检测方法通常为点云平面拟合算法,比如RANSAC算法。点云平面拟合算法在确定目标对象尺寸时,需要预先设定一个位置范围,将位于该位置范围内的点云点确定为同一表面的点,然后根据位于同一表面的各个点云点的三维坐标实现表面尺寸检测。显然,对于表面凹凸较大的目标对象,点云平面拟合算法无法准确检测出位于同一表面的点云点,因此,也无法准确地对该表面的尺寸进行检测。
另外,在某些情况下,是需要识别目标对象的形状的,目前,大多数形状识别完全依赖人工。比如,若目标对象是包裹,则在包裹进入中转场时,为避免形状不符合要求(比如球形、柱形等)的包裹进入交叉带分拣,需要在包裹进入交叉带分拣之前,人工识别各个包裹的形状,然后将形状不符合要求的包裹(比如球形、柱形等)选取出来。因此,目前对目标对象形状的识别完全依赖人工,效率较低。
实现思路