本技术涉及电池领域,公开了一种葡萄糖酸盐衍生的硬碳负极材料及其制备方法和负极及锂离子电池,通过将葡萄糖酸盐在惰性气体氛围下进行第一热处理后,再用酸性溶液进行浸泡得到中间体,将中间体在惰性气体氛围下进行第二热处理获得硬碳负极材料;第一热处理的过程包括第一步热处理和第二步热处理,第一步热处理的温度为400‑600℃,时间为1‑2h,第二步热处理的温度高于第一步热处理的温度;第二热处理的过程包括第三步热处理和第四步热处理,第三步热处理的温度高于第二步热处理的温度,且低于第四步热处理的温度,第四步热处理的温度为1300‑1500℃,时间为50‑150min,本发明提供的方法简单,成本低,制备的负极材料,在醚基电解液中发挥出了更高的储锂容量。
背景技术
随着全球经济的快速发展,让人们逐渐认识到化石燃料日益枯竭及其对环境带来的危害,开发绿色、无污染的可再生能源是解决能源环境问题的有效途径。近年来,锂离子电池由于具有高容量、循环寿命长等优点而在便携式电子设备、电动汽车等领域得到广泛应用。锂离子电池发展至今,已研究出多种正极材料体系,在锂离子电池诞生与发展的历史进程中,碳负极材料在提升电池储能性能、改善安全、降低成本等方面发挥了重大作用,并引发了全球学术与产业机构的研发热潮。目前,商用锂离子电池负极以石墨类材料为主,根据石墨层间LiC6
的储锂机制,其理论比容量仅为372 mAh/g,提升空间十分有限,且石墨层间的锂扩散也制约了其倍率性能。由此可见,随着下游应用对电池能量和功率性能的需求不断提升,纯石墨类负极材料已显得捉襟见肘。硬碳作为一种新型负极材料,拥有和石墨类似的锂电位和更高的比容量。更重要的是,硬碳是由类石墨的微晶结构和开口的角状微晶组成,这种独特的微晶结构不仅可以提供更多的储锂位点,而且有利于锂离子在石墨层间脱嵌。因此,硬碳作为新一代锂离子电池负极材料,发展前景十分广阔。
近年来,硬碳负极材料的研究已取得重大进展,但许多挑战/瓶颈仍然存在:1)大多数硬碳材料的储锂容量仍较低;2)倍率性能和循环性能有待提升。
实现思路