本技术属于水文预报领域,公开了一种基于图卷积神经网络(GCN)的水库水位预测方法。该方法旨在解决降雨情况下的水库水位预测问题,为水库调度提供有效支持。主要通过图卷积神经网络(GCN)对降雨图像数据进行训练,并结合双向长短时记忆网络(BiLSTM)提取水库水位的时间序列特征,从而构建一个能够通过降雨图像预测水库水位的模型。具体而言,GCN用于提取降雨图像的时空特征,并利用多头注意力机制对这些特征进行融合。在BiLSTM中,输入的时序数据序列通过两个方向的LSTM网络进行处理,从而同时捕获过去和未来的信息。通过合并这两个方向的隐藏状态,模型能够更深入地理解时序数据的内在规律,从而提高水库水位的预测精度。
背景技术
实现思路